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An effective free energy for a fluctuating system is investigated using an exact 
(local) renormalization group (RG) equation. This equation accounts for the 
fluctuation interaction in a reduced manner (at Fisher exponent r/= 0) and leads 
to a physical solution branch which gives realistic estimations for the free energy 
and nice critical exponents. It is shown that in spite of the monotonic character 
of the effective free energy in the critical region, all vertices should be taken into 
account in the effective Ginzburg-Landau-Wilson functional. The large-scale 
structure of the fluctuating field at a second-order phase transition is studied 
utilizing the calculated free energy and localized nonlinear excitations are found 
with profiles rather like those previously obtained in a model approach. 

KEY WORDS: Nonlinear excitations: critical region; renormalization group 
(RG); fluctuations. 

I N T R O D U C T I O N  

It is well k n o w n  jus t  from the m e a n  field theory that  a f irs t-order phase 
t r ans i t ion  is an t ic ipa ted  by n o n l i n e a r  exci ta t ions  which can  be in terpre ted  
as nuc l ea t i on  centers in the paraphase .  The  kinetics of the f i rs t-order  phase 
t r ans i t ion  in different physical  systems has been the subject  of intensive 
studies (see for review refs. 1-10 a n d  references in these papers) .  As a rule, 
the o rder ing  of a metas tab le  d isordered  phase is due to the f luc tua t ion  
p roduc t i on  and  finally to the growth  of the nucleus  of the s table  phase. In  
a f irs t-order phase t r ans i t ion  there is a change  in some order  pa rame te r  ~0 
between these two phases which lowers the free energy as the new phase 
forms. The  co r r e sp o n d i n g  local free energy densi ty  F(~0) mus t  have a 
metas tab le  m i n i m u m  at ~0 = 0 a n d  be energet ical ly favorable  for ~o = ~0o ~- 0. 
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However, the free energy is transformed due to the fluctuations. This 
change is especially essential in the critical region at a second-order trans- 
ition. It is well known from the theory of critical phenomena that the fluc- 
tuations manifest themselves by renormalization of critical exponents/~- ~3~ 
The renormalization group method allows one not only to perform purely 
numerical calculations of critical exponents, but also to predict some 
qualitatively new effects which could not be obtained within conventional 
approaches, e.g., within the Landau theory approximation. Among them 
are qualitative effects, such as the fluctuation-induced first-order phase 
transition (see, for example, refs. 14-17). This effect takes place in some 
anisotropic systems where the renormalized free energy F(q~) undergoes 
transformations which are typical for the first-order phase transition, 

Recently nucleation centers were found in a fluctuation-induced first- 
order transition/~81 However, in any case, the free energy is transformed 
due to fluctuations in the critical region. One can expect that even in the 
situation when the fluctuations are not strong enough to change the 
transition order they manifest themselves somehow. It was shown t~9~ that 
localized nonlinear excitations are possible in this situation, too. This effect 
was found using a very simple model of the phase transition/'9'z~ Let us 
recollect it briefly. 

The isotropic Landau-Ginzburg-Wilson functional 

n - '  f - ~ dr [(Vq~) 2 + F(q~)] (l) 

was considered with arbitrary function F(~o) having a representation in 
series form 

F(q~)= ~ u2~(~o2) k (2) 
k = l  

To make the model exactly solvable all integrals of the ~ dr r type 
were replaced by the powers of the integral a = ~ dr ~02(r), i.e., 

f dr q( ' * ( r )  --,. V(a/V) k [ r (q~  2) ~ F(a/V)] 

After this simplification the partition function and flee energy of the system 
were calculated analytically. 

It was obtained that the effective flee energy in the fluctuation region 
remains a monotonic function, as it naturally should be for isotropic 
systems. However, its structure is changed and the phase transition should 
be described at least by the ~06-model. It is not very essential for 
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equilibrium order parameter evolution, but leads to the generation of the 
nonlinear excitations in the critical region. 

The described model is very convenient for analytical study, but it 
reduces the fluctuation interaction and it is impossible to control a 
correction which should be done to the free energy with account of the 
neglected fluctuations. A more correct approach may be based on the RG 
technique. Below this approach will be developed. 

In addition, the time-space evolution of the fluctuating order 
parameter field will be numerically studied in the critical point. It will be 
shown that the fluctuating field has well-pronounced large-scale structure 
in spite of its scale invariance on average. This structure is similar to an 
analogous one recently found in the intermediate stage of the nucleation 
process at first-order phase transitionsJ '~ but it does not lead to final 
ordering. 

1. EFFECTIVE FREE ENERGY IN CRITICAL REGION 

A formally exact functional RG equation was first suggested by 
Wilson. (~4''5~ It can be written in the form 

1 Iq dV OH 
/~(H[q~]) = ~ tl(q)[V-Go~(q)l~p(q)12]+ O--V 

[ tp(r) . ]6H 
-fdar ( d - 2 ) - - ~ - + r V / p ( r )  6q~(r) 

+L,.{hIr-r')La~(~Ir') aq,(,)a~o(, )a 

I 6H 
-~ v/(r - r') q~(r) f i - - ~ }  (3) 

where H = H,otal- Ho and 

d is the 

H =  2 t-'-k (2x) a6 (qiWqi') 
k = 1 { q t . q i ' }  i I 

k 

xgk{qi, q,'} 1-I ~p,l,q~q; 
i = l  

space dimensionality, ~o is an n-component vector, h(q)= 
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exp(-q2/2A 2) is the cutoff factor, and the function of the anomalous 
dimensionality is defined by the relations 

~/(q) = ~/(0) + { [ D ( q ) -  D(O)] - tl(O) G o '(q)}/EG o '(q) + g , ]  

D(q) = -g] h(q) + �89 Ir h(p)[ng2(p, -p;  q, -q )  + g,(p, - q ;  q, - p ) ]  

The value t/= dD/d(q2)l,=o coincides with the Fisher exponent. 
Recently this equation was used to formulate several variants of 

nonperturbative calculations of critical asymptotics. ~zl 25~ The exact RG 
equation has, of course, among others the solution corresponding to the 
standard ~-expansion. ~26-2s~ 

The strict calculation procedure uses the essentially nonlocal Ginzburg- 
Landau-Wilson functionaU 26 32~ At the same time the expected generation 
of nonlocalities is small (to the extent of the smallness of the Fisher exponent 
q = 0.03). So, in the cases when one is interested not in the calculation of the 
exact critical asymptotics but only in some qualitative features of the theory, 
one may neglect this generation limiting oneself to the local form of the exact 
RG equation 128"3~ 32): 

df/dl= d r -  ~ ~ ~7,pf + V~.f - ( ~ f ) 2  (4) 

where q3 is the n-component fluctuating field, F(~(r)) is the density of the 
free energy functional having the form H =~ddrf(~(r)), d is the space 
dimensionality, / is the renormalization group "time," and the fixed point 
F*(q3; l) is defined by the condition df*/dl = O. 

In the general case the free energy functional density f*(q~) should 
satisfy very weak restrictions. It must be defined in the whole region of q~ 
values, be even, and be infinitely increasing at q~2 __, oo. 

In this article we shall limit ourselves to a scalar form off*(q~) (for 
more general study see refs. 30 and 32). It is easy to prove that at ~0 ~ oo 
the function f *  has the asymptotics f *  ~ ~o2/2 + .... One can prove that it 
is the (unique) solution which has a physical sense in phase transition 
theory. It was found recently ~3~ by numerical and (partially) analytical 
calculation. Below we give a brief review of its properties useful for our 
needs. 

This solution gives negative critical temperature renormalization, 
because the gl vertex in the series f *  =Yk  gt,(~2) k is negative. Direct 
calculation of the spectrum leads to very good critical exponents. Both 
these facts are very essential for the applicability of the solution to the 
criticality, c33~ 
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A local approximation for the physical free energy at the critical point 
can be obtained from formal renormalization of the critical temperature: 

F(~0) = f ( c p ) -  gl ~ o 2 -  go (5) 

Here the zeroth constant g o = f ( 0 ) ,  which is not essential for physical 
results, is subtracted also. In Fig. 1 the functions f(~p), F(~0) (bold line), 
and its derivative F~(~o) (broken line) are shown. It is seen that near the 
point r = 0 the free energy has a very wide minimum. 

It is interesting to note that as a matter of the fact, at d =  3 one deals 
with ~p6-theory. The effective potential F is defined at small values of ~ by 
a Laguerre polynomial rl,,/2 ~3 -~(~0-'). At large ~0 the potential has a cross- 
over to the asymptotics f - ~  (o2/2 + .... This behavior is only qualitatively 
the same as can be expected from previous experience (for example, from 
the e-expansion) in r Such a structure corresponds to anomalous 
series of its vertices (in some analogy with the result obtained for the free 
energy in an exactly solvable modelll9~). 
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Fig. 1. 
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Exact (local) renormalized functional f(tp) at d= 3 for scalar model, local part of the 
effective free energy F(~0) (bold line), and its derivative (broken line). 
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Table I 

k 0 1 2 3 4 5 6 ... 

g, 0.076 -0 .456  0.373 -0.141 0.067 -0 .036  0.020 ... 

In principle Eq. (4) can be represented as a hierarchy of equations for 
�9 "~k functional vertices f =  ~ gk(tp- ). It can be shown that this set of equations 

may be truncated when e ,~ 1 ~25 2s~ to obtain the e-expansion-like equations. 
However, at physical d <~ 3 such a truncation of the series leads to complex 
eigenvalues even for an isotropic solution�9 This means that large powers of 
tp play an essential role and one cannot cast them away�9 The main reason 
for this result is the q~2/2 asymptotics of the physical solution branch. 

The scalar equation for the vertices has a relatively simple form, 

gk = [ d -  ( d -  2) k] gk + (2k + 1 )(k + 1) gk+ ,/2 
k + l  

- Z m ( k - m + l ) g , , g k + J  .... = 0  (6) 
m =  1 

and may be solved as a recursion relation which defines all vertices as 
functions of a given zero-point constant f (O)=  go: 

g k + l  = (~k+ l [ g k ;  g k - I  ;" ';  go] (7) 

(~k+l['"] = f -  [ d -  ( d - 2 ) k ]  g* 

k+l } 1 
+ ~" m ( k - - m + l ) g " ' g * + t - " '  ( 2 k + l )  (8) 

m = l  

Table I gives the first vertices gk. 
It is directly seen from the table that the sequence gk "~ ( - 1 )* and very 

slowly tends to zero for large k. This effect is the result of the asymptotic 
behavior because it is controled by the gk with large k values. 2 

2. LARGE-SCALE STRUCTURE OF FLUCTUATING FIELD 

Let us use the function F(tp z) as the approximate local part of the 
nonequilibrium free energy functional Herr renormalized due to microscopic 
fluctuations: 

Herr= I dr [�89 2 + F(tp2)] (9) 

-" Recently the role of highest-order correlation functions was emphasized in a calculation 
of critical exponents by a renormalization of the Ornstein-Zernike equation for the 
liquid-vapor critical pointJ 34"35. 
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The nonuniform order parameter distribution is given by the saddle point 
equation 6Hcrr/6q~ = 0: 

I-V ~ -  r<ol~p] q, = 0 (10) 

In contrast with a previously used model approach, ~9) the free energy 
here is known in the form of numerical data only. So an analytical solution 
of the equation is absolutely impossible. But one can do it numerically. 
Moreover, taking into account that the F(~p) function is generated by a 
differential equation, numerical study here seems to be natural and 
convenient. Taking this in mind, one can start just from the more general 
form of the equation for the mesoscopic order parameter time and space 
distribution: 

~,- ' d~p/dt = - 6 H / & o  + 2(t; r) (11) 

Here and below the subscript "eft" is omitted for brevity; 7 is the kinetic 
coefficient and the random noise 2(t; r) with the properties 

(2(t;  r ) )  = 0; (2(t;r) 2(t;r '))=D6(r-r')  

is introduced to account for the fact that the large-scale excitations of the 
order parameter field should arise not "by themselves," but as a result of 
an evolution of the arbitrary (small) fluctuations. The noise intensity D is 
defined by the temperature of the system D =  T =  1 [following previous 
studies, O_6 3ol T =  1 has been chosen in Eq. (3)]. The presence of random 
noise 2(t ;r)  leads to a very complicated structure of the interacting 
excitations with different magnitude and dispersion. 

Equation (11 ) was studied numerically for space dimensionalities d = 1 
and d = 2. In both cases similar large-scale structures were found with quite 
pronounced long-time excitations. Common features of the structures at 
d =  1 and d =  2 allow one to suppose that the same structure should occur 
at d =  3, too. The main results are presented in the figures. 

Figure 2 shows a small fragment of the current order parameter r 
distribution (white line) at some time t = to. Relatively large (mesoscopic) 
excitations of the form close to those analytically found before 09) can be 
observed directly. More essential is that the structure is conserved over a 
long time "on average." To demonstrate this fact the prehistory of the 
current distribution down to t = t o -  2 (in dimensionless units) is shown on 
the same figure by black lines. A correlation is quite obvious. The 
two-point correlation function 

G ( r - r o )  = (~p(r) ~p(ro)) (12) 



248 Fil ippov 

can be calculated directly from numerical data and it is shown also on the 
insert to Fig. 2. It has a linear behavior at small distances and an exponen- 
tial one at large r. This behavior is quite the same as was obtained for 
solitary excitations in the model frame. I]9~ 

Let us turn now to the two-dimensional picture�9 Figure 3 shows the 
small pattern evolution with time. The order parameter value is given by 
the intensity of the gray (here both signs of fluctuations ~0 > 0 and ~ < 0 
are presented, of course)�9 Black points correspond to the maximal value of 
(+<o)-~ 10 -2. 

It is easy to see some large "stable" formations. Well-pronounced noise 
is presented on the picture. With time, the picture will be completely 
changed�9 This reconstruction takes place in two main forms: (a)density 
maxima relax and disappear with time; (b) the maxima move chaotically as 
"small particles�9 

It is seen from the pictures that the excitations do not always have an 
isotropic structure�9 Moreover, taking into account that they are not equi- 
librium order parameter distributions, one can prove that the probability 
for long excitations (density folds) to arise due to random noise is larger 
than it is for isotropic ones. This effect is quite the same as is for a critical 
nucleus at a first-order phase transition ~91 and the reason is that some 
gradient terms in the free energy functional for long fluctuations tend to 
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Fig. 2. Current order parameter ,.,0 distribution (white line) at some time t - = t  o. The 
prehistory of this current distribution down to t = t o -  2 (in dimensionless units) is shown by 
black lines. The two-point correlation function is shown in the insert. 
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(a~ 

Fig. 3. Evolution of small pattern of q~(t; r) with time. 

zero. During its evolution a large excitation tends to an isotropic form. But 
in the initial steps of the evolution the probability for new excitation 
generation near its long "tails" is essentially larger than it is at other space 
points. This process leads to the formation of a specific "large-scale 
structure" of fluctuating field shown in Fig. 4. This picture is slightly filtered 
and color resolution is higher to make the structure quite obvious. It seems 
like the same picture arising in the intermediate stage of order parameter 
relaxation to a stable phase at a first-order transition recently found/1~ 

Structure formed at a critical point does not lead to an ordered stable 
phase and exists in the kinetics only. It is transformed completely with 
time. Nevertheless, it should be treated as a stationary (but not static) 
distribution of the fluctuations. Let us calculate the averaged derivative 
<Ow[q~]/at > from the probability density functional w[q~] = exp( - H[t,o]): 
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Fig. 4, Developed large-scale structure of the fluctuating field. 

Here we take into account that 

(/fiH[q~] 2(t; r') DS(r-'" (14) 
\ ~o(r) = r ~ & o ~ ' )  

for 6-correlated random noise having only second nonzero correlator 
<2(t; r) 2(t; r ')> = DS(r - r'). 

Comparing Eq. (13) with renormalization group equation (3) and 
taking into account that/~(H[~o]) = R(Horr[~0])= 0, one can conclude that 
at least in local approximation the evolution of the <w[q~]> value is 
equivalent to its simple scale transformation. This means that the noise will 
produce more large (and more small) excitations during the time, but the 
general structure will be conserved. 

Strictly speaking, the local approximation does not correspond to the 
physical picture described, because it should define some special scale in 
the space due to a fixed factor at the gradient term. A more rigorous 
approach is needed in nonlocal corrections to the effective energy H[~0] 
and in corrections to the kinetic coefficient 7 # const, respectively. One can 
believe, however, that due to their smallness the qualitative picture 
obtained will be the same. 

Summarizing, one can conclude that the fluctuation interaction leads to 
free energy transformations which are accompanied by localized order 
parameter excitations. These excitations form a "large-scale structure" which 
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is qual i ta t ive ly  the same as the a n a l o g o u s  one  in the in te rmedia te  stage 
of o rder  pa rame te r  re laxa t ion  to the stable state at f i rs t-order phase 
t rans i t ions .  This  s t ruc ture  may  be in terpre ted  as a source for instabi l i t ies  
and  nuc lea t ion  at f luc tua t ion - induced  f i rs t-order  phase t ransi t ions .  

A C K N O W L E D G M E N T S  

I t h a n k  Prof. T. Soboleva,  Dr.  Yu. Kuzovlev ,  and  Dr.  A. Zel tser  for 
help and  discussions.  I am also grateful  to Prof. J. Badial ly  for useful dis- 
cuss ion of the role of h igher -order  vertices of the free energy func t iona l  at 
criticality. I t hank  Prof. Yu. l v a n c h e n k o  for the idea to s tudy the n o n l i n e a r  
exci ta t ions  in the crit ical region an d  Dr.  A. Radievsky  for the d e m o n s t r a -  
t ion of some images which s t imula ted  add i t iona l  interest  in the problem.  
This  work  was suppor t ed  by U k r a i n i a n  g o v e r n m e n t  Project  no.  9.1.9 and  
the Soros  I n t e r n a t i o n a l  Science F o u n d a t i o n .  

REFERENCES 

I. L. D. Landau and E. M. Lifshits, Statistical Physics 3rd ed. (Nauka, Moscow, 1976). 
2. L. D. Landau and L. P. Pitayevsky, Physical Kinetics (Nauka, Moscow, 1976). 
3. L. D. Landau and I. M. Khalatnikov, in L. D. Landau Collected Work (Nauka, Moscow, 

1969), Vol. 2, pp. 218-222. 
4. J. A. Tuszynski, R. Paul, and R. Catterjee, Phys. Rev. B 29:380 (1984). 
5. J. A. Tuszynski, M. Otwinowski, R. Paul, and A. P. Smith, Phys. Rev. B 36:2190 (1987). 
6. J. A. Tuszynski, M. Otminowski, R. Paul, and A. P. Smith, Phys. Rev. B 36:2190 (1987). 
7. J. A. Tuszynski and R. Paul, Phys. Rev. B 29:380 (1984). 
8. A. E. Filippov, Yu. E. Kuzovlev, and T. K. Soboleva, Phys. Lett. A 165:159 (1992); 

178:301 (1993). 
9. Yu. E. Kuzovlev, T. K. Soholeva, and A. E. Filippov, Soy. Phys. JETP 103:858 (1993). 

10. Yu. E. Kuzovlev, T. K. Soboleva, and A. E. Filippov, JETP Lett. 58(5) (1993). 
11. K. G. Wilson, Phys. Rev. B 4:3174 (1971). 
12. K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28:240 (1972). 
13. K. G. Wilson and G. Kogut, Phys. Rep. 12C:240 (1974). 
14. A. Aharony, in Phase Transitions and Critical Phenomena, Vol. 6, C. Domb and M.S. 

Green, eds. (Academic Press, New York, 1976), p. 357. 
15. A. Z. Patashinskii and V. L. Pokrovskii, Fluktuatsionnaya Teoriya Kriticheskikh Yavlenii 

(Mir, Moscow, 1982). 
16. D. M. Mukamel and S. Krinsky, Phys. Rev. B 13:5065 (1976). 
17. D. M. Mukamel and S. Krinsky, J. Phys. C 8:L496 (1975). 
18. Yu. M. Ivanchenko, A. E. Filippov, and A. V. Radievsky, Fi:. Nizk. Temp. (Soy. Low 

Temp. Phys.) 18:957 (1992). 
19. Yu. M. Ivanchenko, A. E. Filippov, and A. V. Radievsky, J. Stat. Phys. 71:1001 (1992). 
20. T. Schneider, E. Stoll, and H. Beck, Physica A 79:201 (1975). 
21. E. K. Riedel, G. R. Golner, and K. E. Newman, Ann. Phys. (NY} 161:178 (1985). 
22. G. R. Golner, Phys. Rev. B 33:7863 (1986). 
23. A. Hasenfratz and P. Hasenfratz, NucL Phys. B 270:687 (1986). 
24. G. Felder, Commun. Math. Phys. I1:101 (1987). 



252 Filippov 

25, P. Shukla and M. S. Green, Phys. Rev. Lett. 34:436 (1975). 
26, G. R. Golner and E. K. Riedel, Phys. Rev. Lett. 34:171 (1975). 
27. V. I. Tokar, Phys. Lett. A 104:135 (1984). 
28. Yu. M. lvanchenko, A. A. Lisyanskii, and A. E. Filippov, J. Star. Phys. 58:295 (1990). 
29. Yu. M. Ivanchenko, A. A. Lisyanskii, and A. E. Filippov, J. Star. Phys. 66:1667 (1992). 
30. A. E. Filippov and S. A. Breus, Phys. Lett, A 158:300 (1991). 
31. S. A. Breus and A. E. Filippov, Physica A 192:480 (1993). 
32. A. E. Filippov and A. V. Radievsky, Soy, Phys. JETP 102:1022 (1992). 
33. S.-K. Ma, Modern Theoo, of Critical Phenomena (Benjamin, 1976). 
34. Q. Zang and J. P. Badiali, Phys. Rev. Lett. 67:1598 (1991). 
35. Q. Zang and J. P. Badiali, Phys. Rev. A 45:8666 (1991). 


